Bushing Monitoring: Motivation, Application and Successes

Dr. Tony McGrail Solutions Director: Asset Management & Monitoring Technology The Doble Engineering Company

IEEE Chicago January 2023

Overview

Introduction

- Motivations:
 - <u>Safety, financial, reliability</u>
 - Industry Experience
 - <u>Failure modes & failure types</u>
 - Prevent failure
 - Bushing Construction
- Application:
 - Monitored parameters
 - PD Detection
 - Leakage Currents
 - Ideal 3 phase system
 - Not a perfect world
 - <u>Sum currents</u>
 - Phase change for a bad bushing
 - Raw and derived data
 - <u>Power Factor offline, relative & true</u>
 - <u>Alerts</u>
 - <u>RPF & TPF</u>

- Cases:
 - <u>Trench 1 & Trench 2</u>
 - GE Type U
 - Westinghouse O+
- <u>Common Themes</u>
- **Conclusions**

(CH 4) 08-08-2012 18:53:17:281

- Bonus Cases:
 - Expectations?
 - <u>Rise and fall</u>

- The aim of this presentation is to review the motivations for bushing condition monitoring, look at some of the features which appear in *good* monitoring systems, and discuss practicalities based on some real cases.
- We have successful cases from many sources, many of which have been presented at the International Conference of Doble Clients; full papers available on request.

Motivations: safety, financial, reliability

- All assets will fail it's a matter of 'when' not 'if':
 - We can prevent failures if we have adequate warning of deterioration
- To quote singer/song-writer Paul Simon: 'Everything put together, sooner or later, falls apart'
- Bushing failure usually leads to transformer failure^{1,2}:
 - The results may be catastrophic safety impacts severe
 - Business interruption costs and environmental clean-up costs may greatly exceed asset replacement costs
- Appropriate monitoring may prevent failures:
 - Detect and diagnose failure modes and have a planned response!

"Evaluation and Identification of Typical Defects and Failure Modes in 110-750 Kv Bushings", V. Sokolov & V. Vanin, 64th International Conference of Doble Clients, Boston, USA, 1997
 CIGRE Technical Brochure 755 "Transformer Bushing Reliability" 2019

Motivation: Industry Experience

- A technical paper by Sokolov and Vanin at the 1997 International Conference of Doble Clients¹ noted results of a survey:
 - ...irrespective of their geographical location or differences in design, high-voltage bushings remain one of the weakest components and may have been the cause of up to 30% of all of the large transformer failures. Because of preventive maintenance, the number of defective bushings removed from service annually is ten times the number of failed bushings.
- CIGRE Working Group A2.43:
 - A failure of any of the bushings results in a transformer failure as well. According to various researches, bushings cause 5 to 50 % of the total number of transformer failures, often followed by transformer damages, fires, huge collateral damage and ecological incidents.

1: "Evaluation and Identification of Typical Defects and Failure Modes in 110-750 Kv Bushings", V. Sokolov & V. Vanin, 64th International Conference of Doble Clients, Boston, USA, 1997

2: CIGRE Technical Brochure 755 "Transformer Bushing Reliability" 2019

Motivation: some failure modes

- As the insulation deteriorates, the bushing will eventually fail
 - Electrical stress will accelerate 'natural' deterioration
- What can cause deterioration? Some modes include:
 - Moisture/contamination ingress through seals, filler caps or flanges
 - Damaged outer covers (porcelain or other material) allowing ingress of moisture/contamination
 - Damage during storage, from animals, vandalism etc
 - Manufacturing defects which provide uneven electrical stress
 - Overheating

Motivation: Bushings and Failure Types

- Bushings have two distinct failure mode timescales:
 - 'Graceful': exemplified by GE Type U bushings where deterioration may take place over several weeks to months¹
 - 'Rapid Onset': found in Trench COT(A) bushings where deterioration may become evident over a few hours²

1: "Chronicling the Degradation of a 345kV GE Type U Bushing", R. Wancour *et al*, 76th International Conference of Doble Clients, Boston, USA, 2009 2: "Condition Monitoring in the Real World", K. Wyper *et al*, 80th International Conference of Doble Clients, Boston, USA, 2013

Motivation: Identify Failure Modes to Prevent Failure

- A bushing allows a current to pass through a barrier
 - Usually, a conductor at elevated voltages and a grounded barrier
- If the insulation deteriorates, the bushing may be compromised and then fail
 - And transformers, breakers etc may fail as a consequence
- Check 2019 Doble Client Conference paper:
 - "Bushing Monitoring What We Can Measure And Implications For Deterioration Detection"
 - Paper discusses thermography/IR, PD, current/phase, power factor and capacitance etc
- As we're interested in the deterioration of insulation, measuring parameters which relate to the deterioration <u>makes sense</u>.
 - We can measure currents/voltages and then derive other parameters

Motivation: Inside a bushing... much can go wrong

g

Monitoring: Parameters

- There are several parameters which may be monitored to indicate deterioration:
 - Leakage current: which allows derivation of power factor, capacitance and harmonic content
 - Temperature
 - EMI/RFI: allows detection and diagnostics of partial discharge (PD): this may be a complex analysis as PD signals propagate extensively
- Power Factor, Capacitance can be directly compared with:
 - Nameplate values
 - Offline test values

Bushing PD

 Measuring PD via the bushing test tap is useful – if you can make sense of the data:

Leakage Current

- Bushing insulation is not perfect:
 - There is a capacitive/resistive leakage which flows to ground
 - Each bushing will have its own leakage current depending on:
 - System voltage driving the current
 - Bushing characteristics
- Variation in the leakage current may thus indicate:
 - Variation in system voltage
 - Variation in bushing characteristics
- We need to identify the root cause of variation!
 - Which we can do and thus save bushings from failure

Ideal 3 phase system – balanced voltages, currents etc

- Relative phase angles all equal
 - X1->X2 = 120°
 - X2->X3 = 120°
 - X3->X1 = 120°
- Magnitudes all equal
 |X1| = |X2| = |X3|
- Applies to system voltages, currents including leakage currents

In a perfect world: leakage currents are identical

The world is not perfect... system voltage magnitude and phase variations are usually present.

This chart shows leakage current magnitude for each of three bushings in a set: the magnitudes vary over time, and also vary relative to each other

This chart shows relative phase of currents for two of three bushings in a set: each should be 120°. We have normalized to 0° so we can easily measure variation from 'ideal'.

The three relative phase angles sum to zero – all information is available in

any 2 values. A chart with three angles is also to be made available.

In a perfect world – 3 balanced Phases Sum to Zero

- Sum Current can be a detector, but system variations mean too many false positives
- Doble moved on from this ~20 years ago: look at individual currents

The sum current chart is available in Doble PRIME for 'old time sake'...

The sum should be zero: the cases here are false positives!

How much phase change would a 'bad bushing' give?

- Relative phase angles **NOT** all equal
 - X1->X2 = 120°
 - X2->X3 = <120°
 - X3->X1 = >120°
- A variation of 0.2° or less would indicate a bad power factor

How do we find this against the 'noisy' system voltage variation? A simple way is to use averaging.

Raw and derived data

Capture raw sine-waves for every current/voltage reading - these are then used to calculate:

Power Factor: Offline, Online Relative and Online True

- Three measurements why are they not all the same?
 - In offline tests we supply the voltage and can control it very precisely
 - In online measurements we have to find a way to measure the voltage
 - The instrument transformer or voltage transformer is ALSO under test
- We measure both relative power factor (**RPF**) and true power factor (**TPF**) simultaneously
- We can identify either bad bushings or bad VTs

What alerts do we need?

- For each parameter we expect 3 levels of alert:
 - INFO, WARNING, ACTION
- That means 3 alerts for each parameter:
 - RMS current
 - Phase angle
 - Daily, weekly, monthly Capacitance
 - Daily, weekly, monthly Power factor
 - Total Harmonic Distortion (calculated with current RMS and Phase)
- Plus an 'instant' alert on any parameter should it exceed a specified value – removes any averaging effects which could delay an alert

Power Factors: Offline v. Online Relative (RPF) v. Online True (TPF)

oobe

20

True Power Factor: is it a bad bushing or bad VT?

- We have had many cases over the years, several of which have been shared at the Doble Client Conference and elsewhere.
- The cases presented here are examples of different bushing designs and failure modes

Trench Bushing: learning from the past

Monitoring Trench COT bushings, known to have a catastrophic failure mode, on >65 transmission transformers at up to 345kV¹. Current rose rapidly for one bushing, generating a top level ACTION alert. **The operators had a written and agreed policy requiring switching out and offline testing after an ACTION alert.**

As a result of applying the policy a likely catastrophic failure was avoided. (Detailed analyses on next slide.)

1: "Condition Monitoring in the Real World", K. Wyper et al, 80th International Conference of Doble Clients, Boston, USA, 2013

Trench Bushing: close the feedback loop - forensics

Bushing construction and foil layout.

Burning at a foil edge at a point corresponding to the red x in the construction. A map of how far through the foils the deterioration had progressed. Offline tests confirmed the incipient failure.

GE Type U Bushing: Graceful failure

Bushing monitoring was used to identify a deteriorating bushing.

Alert limits and response plans were put in place before the bushings were returned to service after a maintenance outage.

The rise in power factor was detected and failure averted. Forensic details in the paper¹.

Serial	NP %PF	NP Cap	Test kV	mA	Watts	%PF corr	Cap(pF)	1.8
1796658	.26	401	10.007	1.488	0.0410	0.28	394.74	1.6
05-105312	.27	492	10.007	1.869	0.0500	0.27	495.89	1.2
1797916	.26	406	10.007	1.502	0.0430	0.29	398.36	Ha 1 -H3 %P -H1 %P
96-71129	.26	377	10.011	1.421	0.0380	0.27	377.03	0.6
3030410394	.24	385	10.008	1.420	0.0390	0.26	376.74	0.2
96-71113	.26	381	10.007	1.431	0.0390	0.27	379.57	and the base was not not not the base base base to
04-218906	.68	464	10.008	1.739	0.1090	0.60	461.26	చ్ బ్ స్
	Serial 1796658 05-105312 1797916 96-71129 3030410394 96-71113 04-218906	SerialNP %PF1796658.2605-105312.271797916.2696-71129.263030410394.2496-71113.2604-218906.68	SerialNP %PFNP Cap1796658.2640105-105312.274921797916.2640696-71129.263773030410394.2438596-71113.2638104-218906.68464	SerialNP %PFNP CapTest kV1796658.2640110.00705-105312.2749210.0071797916.2640610.00796-71129.2637710.0113030410394.2438510.00896-71113.2638110.00704-218906.6846410.008	SerialNP %PFNP CapTest kVmA1796658.2640110.0071.48805-105312.2749210.0071.8691797916.2640610.0071.50296-71129.2637710.0111.4213030410394.2438510.0081.42096-71113.2638110.0071.43104-218906.6846410.0081.739	SerialNP %PFNP CapTest kVmAWatts1796658.2640110.0071.4880.041005-105312.2749210.0071.8690.05001797916.2640610.0071.5020.043096-71129.2637710.0111.4210.03803030410394.2438510.0081.4200.039096-71113.2638110.0071.4310.039004-218906.6846410.0081.7390.1090	SerialNP %PFNP CapTest kVmAWatts%PF corr1796658.2640110.0071.4880.04100.2805-105312.2749210.0071.8690.05000.271797916.2640610.0071.5020.04300.2996-71129.2637710.0111.4210.03800.273030410394.2438510.0081.4200.03900.2696-71113.2638110.0071.4310.03900.2704-218906.6846410.0081.7390.10900.60	SerialNP %PFNP CapTest kVmAWatts%PF corrCap(pF)1796658.2640110.0071.4880.04100.28394.7405-105312.2749210.0071.8690.05000.27495.891797916.2640610.0071.5020.04300.29398.3696-71129.2637710.0111.4210.03800.27377.033030410394.2438510.0081.4200.03900.26376.7496-71113.2638110.0071.4310.03900.27379.5704-218906.6846410.0081.7390.10900.60461.26

March 2008 Off-Line C1 Test Results

""Chronicling the Degradation of a 345kV GE Type U Bushing", R. Wancour *et al*, 76th International Conference of Doble Clients, Boston, USA, 2009

©2021 Doble Engineering Company. All Rights Reserved.

Monthly %PF Trend H1 and H3

Westinghouse O+ Bushing

A Westinghouse O+ Bushing generated alerts showing rapid deterioration. The ACTION alert followed ~13 hours after the INFO alert.

/oltage Below Limit	Thu 2018-02-22 11:24 AM
2967 OPEN	Thu 2018-02-22 11:24 AM
-3 CLOSED	Thu 2018-02-22 11:18 AM
IDD306 ALERT Alert	Wed 2018-02-21 9:18 PM
· IDD303 ALERT Warning	Wed 2018-02-21 2:22 PM
· IDD300 ALERT Investigate	Wed 2018-02-21 8:21 AM
C Battery back to normal	Wed 2017-12-13 10:57 AM
L - DCBattery Above Limit Limits Exceeded	Wed 2017-12-13 4:20 AM

Power factor for one bushing rose sharply, and its leakage current rose by ~0.6mA, or about 5%. Offline tests were performed confirming the deterioration: a 9x rise in power factor.

Test No		Bus	hing Nameplate	,		Test Mode	TEST kV	Capacitance C (pF)	POWER FACTOR %		
	Dsg.	SERIAL #	CAT. #	PF	ap (pF)				Measured	@ 20°C	Corr Fa
11	H1	K728058		0.26	426.00	UST-R	10.01	416.76	0.29	0.29	1.00
12	H2	K7282187		0.25	425.30	UST-R	10.00	416.24	0.28	0.28	1.00
13	HB	K7296687		0.30	402.80	UST-R	10.01	420.10	2.41	2.41	1.00

An incipient failure was thus avoided.

Successes: Common Theme

- What we see in successful condition monitoring cases includes:
 - Setting expectations: for the monitor, the measurement to be made and the organization
 - For each bushing in each individual application, identify what to expect for leakage current magnitude, for power factor and for capacitance, for PD?
 - Identify limits for each level of alert
 - Have a planned response for each alert on each bushing
 - Ensure the plan is agreed and 'written up' names, timescales, actions
 - When an alert comes in: FOLLOW THE PLAN!

In Conclusion

Bushing Monitoring provides benefits:

- Bushing 'saves'
- Transformer 'saves'

Needs some understanding of what the numbers mean:

- Failure modes likely to be found in a bushing
- Symptoms of failure modes
- Data for detection of anomaly (not all anomalies are bad)
- Analyses to alert: who, why, what to do, by when?

Need the organization to embed monitoring in daily activities What is common in successful cases is a response plan agreed by stakeholders and decisive action!

Case Study: Setting Expectations: 2012 install, 2014 test results

Bushing Test (C1)

ID	Serial #	Test kV	mA	Watts	Corr Fctr	PF*TCF [%]	NP %PF	Cap (pF)	NP Cap	FRANK™	Manual
НО		10	1.394	0.033	0.856	0.206	0.23	369.71	369	Good	
H1		10	2.05	0.05	0.856	0.206	0.25	543.77	546	Good	
H2		10	2.101	0.056	0.856	0.231	0.28	557.44	561	Good	
НЗ		10	2.046	0.05	0.856	0.206	0.25	542.8	546	Good	

 $H2_{C1}/H1_{C1} * 100 = 561 / 546 * 100 = 102.75\%$

Expect H2 current to be ~3% higher than H1 or H3

Checking Expectations: Measured Current ratio

Date range: March 25th to April 12th 2020

Checking ratio at two points

Same dates: Variation in Relative Phase: 2 or 3 angles?

- Three relative phase angles must sum to 360°
- All the 'information' is in two angles

©2021 Doble Engineering Company. All Rights Reserved.

-H2->H3

-H3->H1

3/25 – 4/12 Daily, Weekly, Monthly Power Factor

No cause for alarm... again, note longer time periods smooth the system variations Timescale for typical failure mode?

Now Extending Range by a week to April 19th

Now Extending Range to May 7th 2020

34

Now Extending Range to June 6th 2020

Stabilized? Actionable?

3/25 – 6/8 Daily, Weekly, Monthly pF & PF

36

Offline Test Results: June 2020

• "Bad" bushing: notice anything interesting?

Bushing Test (C1)

ID	Serial #	Test kV	mA	Watts	Corr Fctr	PF*TCF [%]	NP %PF	Cap (pF)	NP Cap	FRANK™
H0	11F0215-152 AXT	10.000	1.394	0.029	1.035	0.220	0.23	369.903	369	Good
H1	11F0261-118 ALR	9.999	2.061	0.051	1.035	0.248	0.25	546.620	546	Good
H2	11F0261-119 ALR	9.999	2.102	0.057	1.035	0.279	0.28	557.618	561	Good
H3	11F0261-120	10.000	2.064	0.444	1.035	2.134	0.25	547.247	546	Bad

It's the bushing! That is the only thing common to both measurements

38

Plan an outage for offline tests and confirmation

If contamination gets into the oil, that w deteriorating power factor

If that contamination provides an alternate path to ground it can reduce the power factor – seemingly improving it

Cracked gasket? Let's posit that and check offline

"Negative Power Factor of Doble Insulation Test Specimens (An Analysis)", D. Kopaczynski, S.J. Manifase, 55th International Conference of Doble Clients, Boston, USA, 1987
 "Review of Negative Power Factor Test Results And Case Study Analysis", L. Pone, 70th International Conference of Doble Clients, Boston, USA, 2002

שבטבד שטאוב בווצוווכבו וווצ כטווואמווץ. אוו הוצוונג הבזבו עכע.

- The 'improving' power factor was an example of a rare occurrence
 - Not well known, even among industry specialists
 - Cracked gasket? Moisture degrades the oil, then builds up an alternate ground path
 - Of all the scenarios, this was the simplest, and reflected the bushing structure
- Outage planned and taken:
 - Online monitoring results confirmed
 - Cracked gasket theory confirmed
 - All three bushings replaced

- Completely broken through
- Case discussed at 90th International Conference of Doble Clients, 2022:
 - "Online Monitoring Detection of Bushing Condition Change Case Studies"
 - Thanks to Phil Prout of National Grid

